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Summary. We present a new technique for the semi-automatic generation of vol-
ume meshes which can be used for numerical flow simulations. Our aim is to end
up with a fine block-structured volume mesh connected to a smooth surface mesh.
For this purpose we start with a polyhedron giving a rough approximation of the
target surface geometry which can be of arbitrary genus. To this initial polyhedron
we apply an alternating iterative process of Catmull-Clark subdivisions and ap-
proximations of the target surface. Usually, such a surface is given by a collection of
trimmed B-spline surfaces so that the best approximation results can be achieved by
projecting the points of the Catmull-Clark limit surface, which converges to uniform
bi-cubic B-spline patches, onto it and subsequently recomputing the control mesh.
If we construct another polyhedron surrounding the initial polyhedron, both being
automatically connected to each other, we can perform three-dimensional Catmull-
Clark subdivision to the flow field between the inner and the outer surface.

1 Introduction, Significance and Related Work

Numerical flow simulations require high-quality volume meshes. The genera-
tion of such meshes as well as the construction of the object around or through
which the flow should be simulated can be very difficult and time-consuming.
We have developed a new promising approach by combining established meth-
ods for 2D- and 3D-subdivision with new algorithms for the limit point com-
putation of a subdivision surface, the projection of the limit points onto given
B-spline surfaces and the approximation of these given surfaces to get new
surface mesh control points (= vertices). The process is illustrated in Fig. 1.
The user only has to construct a simple inner initial surface polyhedron, being
roughly similar to the target surface of arbitrary genus, and an outer surround-
ing polyhedron by giving the coordinates, the face connectivity and optionally
edges which should be treated like creases. These two surfaces are connected
automatically leading to a coarse volume mesh representing the flow field.
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Fig. 1. Process of volume mesh generation

The subsequent iterative process can be stopped if the approximation of the
target surface is satisfying and the volume mesh is fine enough.

For the 2D-subdivision we use the scheme presented by Catmull and
Clark [1]. Due to the convergence of the Catmull-Clark limit surface to uni-
form bi-cubic B-spline patches (see [1]) we get a smooth C2-surface with the
exception of points where no tensor-product topology is given (C1 there). The
results of Stam’s analysis of the subdivision matrix [2] with an extension for
modeling creases [3] allow for the pre-calculation of the limit surface points
at each refinement level. We apply 3D-subdivision by using a combination of
the schemes presented by Joy and MacCracken [4] and Bajaj et al. [5].

2 Background on Catmull-Clark Subdivision

The Catmull-Clark scheme [1] can be applied to surface meshes that are not
regular rectangular grids. A refinement step is defined by the following rules:

1. Add a point for each face: F = 1
N

N−1∑
i=0

Pi, average of the N face vertices.

2. Add a point for each edge: E = 1
4 (Fleft + 2Ec +Fright), weighted average

of the two adjacent face points Fleft, Fright and the edge midpoint Ec.
3. Move each old vertex: Pnew = 1

N (F̃ + 2Ẽc + (N − 3)P), weighted average
of the vertex P, the average F̃ of the adjacent face points and the average
Ẽc of the adjacent edge midpoints; N : number of edges connected to P.

Finally, the new face points are connected to the new adjacent edge points.
These 2D-rules are applied to the inner and the outer surface in iteration

step 1 (see Fig. 1), while the space in between is refined by 3D-subdivision. We
use the 3D-rules given in the list below demanding the volume mesh to contain
only hexahedra composed of eight vertices, six faces and twelve edges. This
is guaranteed if the inner surface mesh exclusively consists of quadrilaterals
before connecting it to the outer one. Since the first Catmull-Clark subdivision
always provides a quadrilateral mesh, this requirement can be fulfilled easily.

1. Add a point for each cell: C = 1
8

7∑
i=0

Pi, average of the eight cell vertices.

2. Add a point for each face: F = 1
4 (Cleft + 2Fc + Cright), weighted average

of the two adjacent cell points Cleft, Cright and the face centroid Fc.
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3. Add a point for each edge: E = 1
N (C̃+2F̃c +(N−3)Ec), weighted average

of the edge midpoint Ec, the average C̃ of the adjacent cell points and
the average F̃c of the adjacent face points; N : number of adjacent faces.

4. Move each old vertex: Pnew =
∑

Ui ∈ ring(P)

3d−dim(Ui,P)

4d val(P)
val(Ui,P) Ui with

ring(P) denoting the set of vertices Ui connected to P by a cell, a face
or an edge. The vertex P itself is stored in ring(P), too. val(P) is the
number of cells containing P, whereas val(Ui,P) gives the number of cells
containing both Ui and P. dim(Ui,P) specifies the connection between
Ui and P (0 if Ui = P, 1 if Ui and P lie on a common edge, 2 if they
only lie on a common face or 3 if they only lie on a common cell).

The first three of these 3D-rules were presented by Joy and MacCracken [4].
Since their vertex recomputation formula (rule 4) does not consider an adjust-
ment for the number of edges a vertex is connected to, we use the equation
developed by Bajaj et al. [5] instead.

Finally, the new cell points are connected to the new adjacent face points.
In turn, these are connected to the new adjacent edge points.

A volume meshing example is given in Fig. 2. Starting from a simple wing
configuration (1), an outer polyhedron surrounding the wing is generated man-
ually (2). These two surfaces are connected by edges and faces automatically
(3), so that 3D-subdivision can be applied (4, mesh after two subdivisions).

Fig. 2. Volume meshing example (3 and 4: translucent view)

3 Limit Points, Projection and Approximation

A point Li of the Catmull-Clark limit surface corresponding to a control point
P(k)

i of the mesh is defined by Li = limk→∞P(k)
i , i.e., the position after k →∞

subdivisions. For the approximation of given surfaces with our Catmull-Clark
meshes we can pre-compute the values Li of the limit surface (see iter. step 2
in Fig. 1) by using Stam’s algorithm for evaluating the Catmull-Clark scheme
at arbitrary points (see [2]) and our extension [6] for the modified rules given
in [3]. The limit points Li can be written as Li = cT

i Vi where we have
collected the weights cj of the involved vertices P(k)

j in the vicinity of the

control point P(k)
i in the vector ci and the associated vertices P(k)

j in Vi.
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For a given surface s we can project Li onto it: Li → Ls
i (iter. step 3 in

Fig. 1). Usually, the surface s is given by a B-spline representation defined

by x(u, v) =
m∑

r=0

n∑
s=0

xr,sNr,p(u)Ns,q(v) where (m + 1) × (n + 1) gives the

number of control points and p and q denote the degree of the B-spline basis
functions Nr,p(u) and Ns,q(v), respectively. Together with knot vectors in u-
and v-direction x(u, v) and the partial derivatives xu(u, v) and xv(u, v) can be
evaluated by applying de Boor’s algorithm [7]. Given such a representation,
we search for parameter values uLi and vLi for each limit point Li such that
‖x(uLi

, vLi
)−Li‖2 = min

u,v
‖x(u, v)−Li‖2. With initial values (u0, v0) we can

formulate an iterative process to solve this minimization problem. The tangent
plane is given by t(uk, vk) = x(uk, vk)+ ∆uk xu(uk, vk)+ ∆vk xv(uk, vk). The
problem now is equivalent to dropping a perpendicular from Li to the tangent
plane. It is given by Li + µknk = x(uk, vk) + ∆ukxu(uk, vk) + ∆vkxv(uk, vk)
where nk denotes the unit normal to the tangent plane. We solve this for
(∆uk,∆vk) and compute the update using a damping factor λk:
uk+1 = uk + λk∆uk, vk+1 = vk + λk∆vk.

Finally, we get an equation of the form cT
i Vi != Ls

i with Ls
i = x(uLi

, vLi
).

We use the notation CV != Ls for the approximation problem ‖CV−Ls‖2 →
min and apply it for a single equation of this system, too. Sampling enough
projection points we end up with an over-determined sparse linear system for
approximation (iter. step 4 in Fig. 1) which we solve by applying the conjugate
gradient method for linear least squares (CGLS or also called CGNR [8]). This
leads to new control point positions with better approximation properties for
the next iteration loop.

The wing depicted in Fig. 3 is used for a test of our algorithm. Its geometry
consists of two B-spline representations, a wing being C1-connected to a wing
tip. Figure 4 shows the initial polyhedron (top) and the result of the iterative
process from Fig. 1 with 2D-subdivision only (middle and bottom).

Fig. 3. Top: B-spline surface (wing +
wing tip, knot-isolines visible), bottom:
close-up of wing tip (knot-isolines vis.)

Fig. 4. Top: Initial polyhedron, mid-
dle: surface mesh after three iterations,
bottom: wing tip after three iterations
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4 Conclusion and Future Work

We have presented a fast iterative procedure for the generation of high-quality
block-structured volume meshes with an inner surface well conforming to a
given target surface. Apart from the manual generation of two initial polyhe-
dra the whole process operates automatically.

We will evaluate the quality of our implementation by using the resulting
volume meshes for numerical flow simulations and comparing the results to ex-
perimental data. From the sub-project High Reynolds Number Aero-Structural
Dynamics (HIRENASD) of the SFB 401 Flow Modulation and Fluid-Structure
Interaction at Airplane Wings at RWTH Aachen (see [9]) we have data from
wind tunnel readings for the wing in Fig. 3 attached to a simplified fuselage.
Furthermore, from the follow-up project Aero-Structural Dynamics Methods
for Airplane Design (ASDMAD) (see [10]), a cooperation with Airbus, we
have additional experimental results for a wing with a winglet.
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